
A Note on Belief Space Binning for POMDPs:
Guarantees under Smoothness Condition

Youheng Zhu
CS Department

University of Illinois at Urbana Champaign
email: youheng@illinois.edu

Abstract

1 Introduction

2 Preliminaries

In this section, we introduce the model setup and algorithms for off-line POMDPs.

2.1 Infinite-horizon Discounted POMDP

An infinite-horizon discounted POMDP is a 7-tuple: M = ⟨S,A,O, r, γ,O,T⟩ where γ ∈ [0, 1)
is the discount factor, S is the latent state space, A is the action space, O is the observation space,
r : S × A → [0, Rmax] is the bounded reward function, O : S → ∆(O) is the emission dynamic,
and T : S ×A → ∆(S) is the transition dynamic. We use ∆(·) to represent a probability distribution
on a specific space, and O and T respectively indicates the probability of the observation given the
current state, and that of the next-state given current state-action pair. We use | · | to denote the
cardinality of a space. For simplicity yet without loosing the essence of the idea, we consider the
spaces S,A,O to be discrete and finite.

The system dynamic can be uniquely demonstrated by the following procedure:

It is important to note that in a general POMDP, the latent state space S is unknown to the learner,
and learners only get access to the trajectories sampled by a behavior policy, which is invariant under
the off-line setting.

2.2 Belief State Space and Smoothness Condition

Since one cannot observe the latent state directly, the overall best prediction of the current state is by
using the information from the entire history of observations and actions. We denote the history at
time step h to be

τh = (o1, a1, o2, a2, · · · , oh−1, ah−1) ∈ H, (1)

and consequently one can predict the current state given the history data. The belief state b(τh) =
Pr(sh|τh) is an element of ∆(S) ⊂ R|S| when |S| < ∞. We use B to denote belief state space such
that

B = {b : ∃h ∈ N ∃τh,b(τh) = b} (2)

Assumption 1. b : H → B is an injection (and thus a bijection).



The assumption is especially natural when considering very large latent state space and therefore very
high-dimensional belief state space. Consequently, |B| = ∞ unless we truncate an infinitely long tail
from the history that we consider and bares a reasonable truncation error. In a following example and
section 7, we will discuss the case of |B| < ∞, which gives us some worst-case properties.

With the assumption, we denote the policy of interest π̃(τh) = π(b(τh)) : H → ∆(A), which is
used to sample an action when given a history.

It is easy to see that a good belief state policy should treat two similar belief state similarly, and thus
should have some smoothness condition with regard to the topology of the belief state space. We
typically denote the type of policy we are interested in using the following assumption.
Assumption 2. (Lipchitz of Policy) ∃Lπ, ∥π(b1)− π(b2)∥1 ≤ Lπ∥b1 − b2∥1.

2.3 Off-line Data

A set of off-line data D is sampled using a behavior policy π̃b in the following manner: Independently
sample n trajectories (o1, a1 · · · ) from the POMDP, then select randomly a tuple (τ

[i]
hi
, o

[i]
hi
, a

[i]
hi
)i

from each trajectory respectively. Eventually,

D = {(τ [i]hi
, o

[i]
hi
, a

[i]
hi
)i}ni=1. (3)

3 Overall Analysis In a Nutshell

[Youheng: to be continue...]

[Youheng: I’ll draw a graph to indicate the three steps I follow to derive a guarantee for the algorithm
on the original POMDP.]

4 Off-Policy Evaluation under Smooth Conditions

4.1 Abstraction under Covering

Definition 1. A ε-cover Cε is a subspace of the belief state space which satisfies:⋃
c∈Cε

B(c, ε) ⊃ B (4)

where B(c, ε) stands for an open ball centered at c with radius ε. The cardinality of Cε is called
ε-covering number. For every ε-cover Cε, there exist a partition of the belief state space, where each
c ∈ Cε acts as the representation element of the bin.
Lemma 1. For two belief states b1 and b2, ∀a ∈ A, we have:

|r(b1, a)− r(b2, a)| ≤ Rmax∥b1 − b2∥1. (5)

Proof. This is easily obtained from:

|r(b1, a)− r(b2, a)| = |Es∼b1 [r(s, a)]− Es∼b2 [r(s, a)]|
= |⟨r(·, a), b1 − b2⟩|
≤ Rmax∥b1 − b2∥1.

And it shows that when treating POMDPs as belief space MDPs, there’s intrinsic smoothness within
the dynamic.

For simplicity, we first adopt the standard bisimulation setting.
Assumption 3. (Bisimulation) For two arbitrary belief points b1 and b2 in the bin represented by an
element c in the ε-cover Cε, we have:

∥ΦP (b1, a)− ΦP (b2, a)∥1 ≤ Lbε.

This would put condition on the ε-cover Cε and the partition it induces.
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Then, we have the result from standard abstraction literature:
Lemma 2. Under Assumption 3, for the abstract policy πϕ, which indicates the true policy π
descending to the binned belief space, we have

∥[V πϕ

bin ]true − V
[πϕ]true
true ∥∞ ≤ Rmaxε

1− γ
+

γLbRmaxε

2(1− γ)2
. (6)

However, Lemma 2 only controls the difference between the value function of the true system and that
of the binned system for the abstracted policy πϕ, which is different from the true policy π. Before
we fill this gap, one may notice that the assumption for bisimulation can be too strong and hard to
understand in this context, and we’d like a weaker and more comprehensible result. To address this,
we first put forward the following commonly-adopted assumption:
Assumption 4. (Belief Space Contraction) Let b1, b2 be two belief points in the belief state space B,
we use the following notation to represent the next-state belief:

bo,a = b(b−1(b) + o+ a)

where + represents concatenation. We also use b+1 instead of bo,a when we do not emphasise a
specific (o, a) pair. The same notation works for b+2, b+3, · · · .

The contraction assumption states that ∀o, a,

∥bo,a1 − bo,a2 ∥1 ≤ η∥b1 − b2∥1
for some uniform η ∈ (0, 1].

A weaker assumption for this is
Assumption 5. (Expected Belief Space Contraction) Replace the contraction assumption in As-
sumption 4 by:

Eπ(b1)

[
∥b+k

1 − b+k
2 ∥1

∥b1 − b2∥1

]
≤ ηk

which is a necessary condition for Assumption 4.

Lemma 3. (Lemma 2 in [5]) For any two belief points b1, b2 satisfying ∥b1−b2∥1 ≤ ε, |P (o|b1, a)−
P (o|b2, a)| ≤ ∥b1 − b2∥1 ≤ ε.

Consequently, we put forward the following proposition.
Proposition 1. For policy π satisfying Assumption 2, we have for ∀o, a

|P (bo,a1 |b1)− P (bo,a2 |b2)| ≤ (1 + Lπ)∥b1 − b2∥1. (7)

Proof. We decompose our target function as

|P (bo,a1 |b1)− P (bo,a2 |b2)|
= |P (o|b1, a)π(a|b1)− P (o|b2, a)π(a|b2)|
= |P (o|b1, a)π(a|b1)− P (o|b1, a)π(a|b2) + P (o|b1, a)π(a|b2)− P (o|b2, a)π(a|b2)|
≤ |P (o|b1, a)(π(a|b1)− π(a|b2))|+ |(P (o|b1, a)− P (o|b2, a))π(a|b2)|
≤ |P (o|b1, a)| · |π(a|b1)− π(a|b2)|+ |P (o|b1, a)− P (o|b2, a)| · |π(a|b2)|
≤ (1 + Lπ)∥b1 − b2∥1 (8)

where we used Lemma 3 for the last inequality.

[Youheng: Here the bound is somehow loose (by a |O||A| factor) in an expected manner.] A tighter
result for Proposition 1 which will be useful later is
Proposition 2. For any o ∈ O,∣∣∣∣ ∑

a∈A
(P (bo,a1 |b1)− P (bo,a2 |b2))

∣∣∣∣ ≤ (1 + Lπ)∥b1 − b2∥1. (9)
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Proof. We follow the same idea in the proof of Proposition 1 and decompose the LHS as∣∣∣∣ ∑
a∈A

(P (bo,a1 |b1)− P (bo,a2 |b2))
∣∣∣∣

≤
∣∣∣∣ ∑
a∈A

P (o|b1, a)(π(a|b1)− π(a|b2))
∣∣∣∣+ ∣∣∣∣ ∑

a∈A
(P (o|b1, a)− P (o|b2, a))π(a|b2)

∣∣∣∣
≤ max

a∈A

∣∣P (o|b1, a)
∣∣ · ∣∣∣∣ ∑

a∈A
(π(a|b1)− π(a|b2))

∣∣∣∣+
max
a∈A

∣∣P (o|b1, a)− P (o|b2, a)
∣∣ · ∣∣∣∣ ∑

a∈A
π(a|b2)

∣∣∣∣
≤ (1 + Lπ)∥b1 − b2∥1, (10)

which proves the result.

The one-step error is easy to control, however, without bisimulation, it is extremely difficult to
control the accumulative error induced by infinite amount of steps. We illustrate first by the following
proposition which shows that without the condition that b1 and b2 are close to each other, the
approximation of the difference of expected reward at the k-th step.

Proposition 3.

|Ea,o,···∼b1

[
r(b+k

1 , ak)
]
− Ea,o,···∼b2

[
r(b+k

1 , ak)
]
| ≤ 4Rmaxη

k (11)

Proof.

|Ea,o,···∼b1

[
r(b+k

1 , ak)
]
− Ea,o,···∼b2

[
r(b+k

1 , ak)
]
|

= |⟨P[o,a]k|b(·|b1), r(b
[·]
1 , a)⟩ − ⟨P[o,a]k|b(·|b2), r(b

[·]
1 , a)⟩| (12)

= |⟨P[o,a]k|b(·|b1), r(b
[·]
1 , a)⟩ − ⟨P[o,a]k|b(·|b1), R⟩

+ ⟨P[o,a]k|b(·|b2), R⟩ − ⟨P[o,a]k|b(·|b2), r(b
[·]
1 , a)⟩| (13)

≤ 2∥R− r(b+k
1 , a)∥∞ (14)

≤ 4Rmaxη
k (15)

The last inequality was the result of belief space contraction. In comparison, one can try to obtain an
upper bound for k-step transition error:

Proposition 4. |P (b+k
1 |b1)− P (b+k

2 |b2)| ≤ (1 + Lπ)(1 + η)k∥b1 − b2∥1

Proof. Using Proposition 1, we get

|P (b+1
1 |b1)− P (b+1

2 |b2)| ≤ (1 + Lπ)∥b1 − b2∥1. (16)

Replacing b1, b2 with b+1
1 , b+2

2 and using Assumption 4, we have

|P (b+2
1 |b+1

1 )− P (b+2
2 |b+1

2 )| ≤ (1 + Lπ)η∥b1 − b2∥1. (17)
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Therefore

|P (b+2
1 |b1)− P (b+2

2 |b2)|

=

∣∣∣∣P (b+2
1 |b1)−

∑
o,a

P (b+2
2 |bo,a2 )P (bo,a1 |b1) +

∑
o,a

P (b+2
2 |bo,a2 )P (bo,a1 |b1)− P (b+2

2 |b2)
∣∣∣∣ (18)

≤
∣∣∣∣P (b+2

1 |b1)−
∑
o,a

P (b+2
2 |bo,a2 )P (bo,a1 |b1)

∣∣∣∣+ ∣∣∣∣∑
o,a

P (b+2
2 |bo,a2 )P (bo,a1 |b1)− P (b+2

2 |b2)
∣∣∣∣ (19)

=

∣∣∣∣∑
o,a

(
P (b+2

1 |bo,a1 )− P (b+2
2 |bo,a2 )

)
P (bo,a1 |b1)

∣∣∣∣+ ∣∣∣∣∑
o,a

P (b+2
2 |bo,a2 )

(
P (bo,a1 |b1)− P (bo,a2 |b2)

)∣∣∣∣
≤ ∥P (b+2

1 |b[·]1 )− P (b+2
2 |b[·]2 )∥∞∥P (b

[·]
1 |b1)∥1 + ∥P (b+2

2 |b[·]2 )∥1∥P (b
[·]
1 |b1)− P (b

[·]
2 |b2)∥∞ (20)

≤ (1 + Lπ)η∥b1 − b2∥1 · 1 + 1 · (1 + Lπ)∥b1 − b2∥1 (21)
≤ (1 + Lπ)(1 + η)∥b1 − b2∥1 (22)

where in (21) we used the fact that ∥P (b+2
2 |b[·]2 )∥1 = P (bo1,a1,o2,a2

2 |bo1,a1

2 ) ≤ 1. This is the
consequence of Assumption 1 that every belief state has a unique history. [Youheng: The same as
Proposition 1, every step there can be a |O||A| factor loose.]

After that, we recursively repeat the procedure above, and using mathematical induction, we get the
result.

With Proposition 4, we can try to control the error propagated from the initial belief space difference:

|Ea,o,···∼b1

[
r(b+k

1 , ak)
]
− Ea,o,···∼b2

[
r(b+k

1 , ak)
]
|

= |⟨(P (b
[·]
1 |b1)− P (b

[·]
2 |b2)), r(b[·]1 , a)⟩| (23)

≤ ∥P (b+k
1 |b1)− P (b+k

2 |b2)∥1 ·Rmax. (24)

Since we only get an L∞ norm in Proposition 4, extending it to L1 would need an extra (|O||A|)k
expenses [Youheng: which is potentially tightable, but would need extra analysis. Even if this value
is reasonable, we would still need the discounted factor γ to be small enough as stated later.], making
the error propagation explode drastically, not to mention that our horizon would go to infinity. Unless
γ < 1/(1 + η)|O||A|, the error would be impossible to control in this analysis. This also tells us that
we do need an assumption such as bisimulation to prevent the error from exploding. Meanwhile,
bisimulation does more than that.

To conclude, bisimulation is the guarantee that the error throughout the horizon can be controlled, but
it not only guarantees that. With this understanding, we would directly make it an assumption as a
weaker alternative to bisimulation for further analysis.

Assumption 6. (Error Propagation Control)

∃LH , ∀k, |Ea,o,···∼b1

[
r(b+k

1 , ak)
]
− Ea,o,···∼b2

[
r(b+k

1 , ak)
]
| ≤ LHRmax∥b1 − b2∥1.

[Youheng: or replace b2 by ϕ(b1)]

The assumption above is almost identical to the following assumption about value functions. But
there are differences as shown in the proof of the next theorem.

Assumption 7. (Lipchitz of Value Function)

∃LV , |V π(b1)− V π(b2)| ≤ LV ∥b1 − b2∥1
|V πϕ(b1)− V πϕ(b2)| ≤ LV ∥b1 − b2∥1

[Youheng: There are close relationships between this and the former assumption, which is also
covered in the proof of the next theorem. Can elaborate it separately later.]

With enough preparation, we now try to control the difference of value function for any abstract
policy πϕ by proposing the following theorem.
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Theorem 1. Under Assumption 6 and Assumption 4, we have

∥[Ṽ πϕ

bin ]true − V
[πϕ]true
true ∥∞ ≤ LHRmaxε

1− γ
+

Rmaxε

1− γη
(25)

Replacing Assumption 4 by Assumption 5, we have

∥[Ṽ πϕ

bin ]true − V
[πϕ]true

true ∥∞ ≤ LHRmaxε

1− γ
+Rmax

√
ε ·

(
1

1− γ
+

1

1− γη

)
(26)

Proof. We first control Ea,o,···∼b1

[∑∞
k=0 γ

kr(b+k
1 , ak)

]
− Ea,o,···∼b2

[∑∞
k=0 γ

kr(b+k
2 , ak)

]
. After

we do this, we can reduce the problem to the one we need using∣∣∣∣ ∑
b1∈bin(ϕ(b))

[
pϕ(b)(b1)Ea,o,···∼b1

[ ∞∑
k=0

γkr(b+k
1 , ak)

]]
− Ea,o,···∼b′

[ ∞∑
k=0

γkr(b′+k, ak)
]∣∣∣∣

≤
∣∣∣∣Ea,o,···∼b

[ ∞∑
k=0

γkr(b+k, ak)
]
− Ea,o,···∼b′

[ ∞∑
k=0

γkr(b′+k, ak)
]∣∣∣∣ (27)

which is already controlled.

To do this, we split the formula into two parts:∣∣∣∣Ea,o,···∼b1

[ ∞∑
k=0

γkr(b+k
1 , ak)

]
− Ea,o,···∼b2

[ ∞∑
k=0

γkr(b+k
2 , ak)

]∣∣∣∣
≤

∣∣∣∣Ea,o,···∼b1

[ ∞∑
k=0

γkr(b+k
1 , ak)

]
− Ea,o,···∼b2

[ ∞∑
k=0

γkr(b+k
1 , ak)

]∣∣∣∣+∣∣∣∣Ea,o,···∼b2

[ ∞∑
k=0

γkr(b+k
1 , ak)

]
− Ea,o,···∼b2

[ ∞∑
k=0

γkr(b+k
2 , ak)

]∣∣∣∣. (28)

We first look at the first term.∣∣∣∣Ea,o,···∼b1

[ ∞∑
k=0

γkr(b+k
1 , ak)

]
− Ea,o,···∼b2

[ ∞∑
k=0

γkr(b+k
1 , ak)

]∣∣∣∣
=

∣∣∣∣ ∞∑
k=0

(
Ea,o,···∼b1

[
γkr(b+k

1 , ak)
]
− Ea,o,···∼b2

[
γkr(b+k

1 , ak)
])∣∣∣∣ (29)

which corresponds to the propagated error within each layer and summing them up. As discussed
above, with Assumption 6, this term is dominated by LHRmax∥b1 − b2∥1/(1− γ).

Next, we look at the second term which is not covered by Assumption 6.∣∣∣∣Ea,o,···∼b2

[ ∞∑
k=0

γkr(b+k
1 , ak)

]
− Ea,o,···∼b2

[ ∞∑
k=0

γkr(b+k
2 , ak)

]∣∣∣∣
=

∣∣∣∣ ∞∑
k=0

(
Ea,o,···∼b2

[
γkr(b+k

1 , ak)− γkr(b+k
2 , ak)

])∣∣∣∣
≤ Rmax∥b1 − b2∥1

1− γη
(30)

where we used Lemma 1 and Assumption 4. If we apply a weaker assumption, Assumption 5, we
have using Markov’s inequality,

P

(
∥b+k

1 − b+k
2 ∥1

∥b1 − b2∥1
≥ 1√

ε

)
≤

√
ε · ηk, ∀ε > 0. (31)
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Consequently,

∣∣Ea,o,···∼b2

[
γkr(b+k

1 , ak)− γkr(b+k
2 , ak)

]∣∣
≤ γk

∣∣∣∣Ea,o,···∼b2

[
r(b+k

1 , ak)− r(b+k
2 , ak)

]
I
(
∥b+k

1 − b+k
2 ∥1

∥b1 − b2∥1
≥ 1√

ε

)∣∣∣∣+
γk

∣∣∣∣Ea,o,···∼b2

[
r(b+k

1 , ak)− r(b+k
2 , ak)

]
I
(
∥b+k

1 − b+k
2 ∥1

∥b1 − b2∥1
<

1√
ε

)∣∣∣∣
≤ γkRmax ·

√
ε · ηk + γkRmax ·

∥b1 − b2∥1√
ε

. (32)

Setting ε = ∥b1 − b2∥1, we get

∣∣Ea,o,···∼b2

[
γkr(b+k

1 , ak)− γkr(b+k
2 , ak)

]∣∣ ≤ γkRmax(1 + ηk)
√
∥b1 − b2∥1. (33)

Finally, summing up all the layers of horizon, we get the second term controlled as

∣∣∣∣Ea,o,···∼b2

[ ∞∑
k=0

γkr(b+k
1 , ak)

]
− Ea,o,···∼b2

[ ∞∑
k=0

γkr(b+k
2 , ak)

]∣∣∣∣
≤ Rmax

√
∥b1 − b2∥1 ·

(
1

1− γ
+

1

1− γη

)
. (34)

which is also controllable, yet by a worse rate (square root). Combining the two terms, we prove the
result using the fact that ∥b1 − b2∥1 ≤ ε inside each bin.

Next we control the gap between Ṽ
πϕ

bin andV πϕ

bin .

Theorem 2.

∥Ṽ πϕ

bin − V
πϕ

bin∥∞ ≤ Rmaxε

1− γ
+

RmaxLV ε

(1− γ)2
(35)

Proof. Our idea is to use chaining. Notice that

Ṽ
πϕ

bin = Eb1∼bin(ϕ(b))[V
[πϕ]true
true (b1)] (36)

and

V
πϕ

bin = E b1∼bin(ϕ(b))

b2∼bin(ϕ(b1))
···

[rϕ(ϕ(b1), a1) + γrϕ(ϕ(b2), a2) + γ2rϕ(ϕ(b3), a3) + · · · ] (37)

Consider V [k] as

V [k] = E b1∼bin(ϕ(b))

b2∼bin(ϕ(b1))
···

bk∼bin(ϕ(bk−1))

bk+1∼bk
···

[rϕ(ϕ(b1), a1) + γrϕ(ϕ(b2), a2) + γ2rϕ(ϕ(b3), a3) + · · · ] (38)
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Then for ∀b,
|V [k+1](b)− V [k](b)| (39)

=

∣∣∣∣E b1∼bin(ϕ(b))

b2∼bin(ϕ(b1))
···

bk∼bin(ϕ(bk−1))

bk+1∼bk
bk+2∼bk+1···

[γkV
[πϕ]true
true (bk+1)]−

E b1∼bin(ϕ(b))

b2∼bin(ϕ(b1))
···

bk∼bin(ϕ(bk−1))

bk+1∼bin(ϕ(bk))

bk+2∼bk+1···

[γkrϕ(ϕ(bk+1), a) + γk+1V
[πϕ]true
true (bk+2)]

∣∣∣∣ (40)

=

∣∣∣∣E b1∼bin(ϕ(b))

b2∼bin(ϕ(b1))
···

bk∼bin(ϕ(bk−1))

bk+1∼bk
bk+2∼bk+1···

[γkV
[πϕ]true
true (bk+1)]−

E b1∼bin(ϕ(b))

b2∼bin(ϕ(b1))
···

bk∼bin(ϕ(bk−1))

bk+1∼bin(ϕ(bk))

bk+2∼bk+1···

[γkrϕ(ϕ(bk+1), a)− γkr(bk+1, a) + γkV
[πϕ]true
true (bk+1)]

∣∣∣∣ (41)

≤ γkRmaxε+
γk

1− γ
RmaxLV ε (42)

where the last inequality used the Lipchitz of value function since the next belief is sampled from the
same bin and thus close enough.

Finally, we do the chaining, and sums up all the V [k+1] − V [k] to get for ∀ϕ(b),

|Ṽ πϕ

bin(ϕ(b))− V
πϕ

bin(ϕ(b))| (43)

=

∣∣∣∣ ∞∑
k=1

(
V [k+1](b)− V [k](b)

)∣∣∣∣ (44)

≤
∞∑
k=1

∣∣∣∣γkRmaxε+
γk

1− γ
RmaxLV ε

∣∣∣∣ (45)

≤ Rmaxε

1− γ
+

RmaxLV ε

(1− γ)2
(46)

Before ending this part, we’ll need to fill the gap between the target policy and the abstracted policy
to which the target policy descended. This is handled by the following theorem.
Theorem 3. The following two inequalities hold simultaneously.

∥V π
true − V

[πϕ]true

true ∥∞ ≤ RmaxLπε

1− γ
+ 2|O||A| γRmax

(1− γ)2
(1 + Lπ)ε, (47)

∥V π
true − V

[πϕ]true

true ∥∞ ≤ RmaxLπε

1− γ
+ |O| γRmax

(1− γ)2
(1 + Lπ)ε+ |O||A|γ(1 + Lπ)LV ε

2

1− γ
. (48)

Proof. Using the fact that V [πϕ]true

true = T [πϕ]trueV
[πϕ]true
true ,

∥V π
true − V

[πϕ]true

true ∥∞ = ∥V π
true − T [πϕ]trueV π

true + T [πϕ]trueV π
true − T [πϕ]trueV

[πϕ]true
true ∥∞

≤ ∥V π
true − T [πϕ]trueV π

true∥∞ + γ∥V π
true − V

[πϕ]true
true ∥∞. (49)

Consequently,

∥V π
true − V

[πϕ]true
true ∥∞ ≤ 1

1− γ
∥V π

true − T [πϕ]trueV π
true∥∞. (50)
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For any b, we have

|(V π
true − T [πϕ]trueV π

true)(b)|
= |(T πV π

true − T [πϕ]trueV π
true)(b)|

=

∣∣∣∣E a∼π(b)

b+1∼P (·|b)

[
r + γV π

true(b
+1)

]
− E a∼πϕ(ϕ(b))

b+1∼P (·|b)

[
r + γV π

true(b
+1)

]∣∣∣∣ (51)

We first look at r,

|Ea∼π(b)[r]− Ea∼πϕ(ϕ(b))[r]| = |Ea∼π(b)[r]− Ea∼π(ϕ(b))[r]|
≤ RmaxLπε (52)

Then we look at V π
true,∣∣∣∣E a∼π(b)

b+1∼P (·|b)

[
γV π

true(b
+1)

]
− E a∼πϕ(ϕ(b))

b+1∼P (·|b)

[
γV π

true(b
+1)

]∣∣∣∣
= γ

∣∣∣∣∑
o∈O

∑
a∈A

[(
P (bo,a|b)− P (ϕ(b)o,a|ϕ(b))

)
· V π(bo,a)

]∣∣∣∣
≤ γ

∑
o∈O

∣∣∣∣ ∑
a∈A

[(
P (bo,a|b)− P (ϕ(b)o,a|ϕ(b))

)
· V π(bo,a)

]∣∣∣∣
≤ 2|O||A|γRmax

1− γ
(1 + Lπ)ε ∧

(
|O|γRmax

1− γ
(1 + Lπ)ε+ γ|O||A|(1 + Lπ)LV ε

2

)
(53)

where we used Proposition 1 or Proposition 2 combined with Assumption 7. [Youheng: We can’t
directly apply Assumption 6 here.]

4.2 Algorithm on Belief Space MDP

Consider a Bellman error minimization algorithm using double sampling, whose optimization target
can be written as

Q̂π = argmin
f∈F

E(f, π) (54)

where

E(f, π) = ED[(f(b, a)− (r + γf(b′A, π)))(f(b, a)− (r + γf(b′B , π)))]. (55)

On the abstracted space, using the same data, the algorithm becomes

Q̂π
ϕ = argmin

f∈F
Eϕ(f, π) (56)

where

Eϕ(f, π) = ED[(f(ϕ(b), a)− (rϕ + γf(ϕ(b′A), πϕ)))(f(ϕ(b), a)− (rϕ + γf(ϕ(b′B), πϕ)))]. (57)

Despite the algorithm was computed in the true system, we consider a virtually executed algorithm,
and adopts the following standard covering assumption.
Assumption 8. (Binned Policy Coverage) ∥dπϕ/dD∥∞ ≤ Cπ(ϕ) < ∞

Note that the coverage value is dependent of the abstraction mapping ϕ. The the best behaving data
collection distribution dD has a worst case coverage would scale as |Cε|, which indicates the covering
number for ε.
Lemma 4. In the binned system, we have the following telescoping error

|JQ̂π
ϕ
(πϕ)− J(πϕ)| ≤

√
Cπ(ϕ)

1− γ
·
√

EdD [(Q̂π
ϕ − T πϕQ̂π

ϕ)
2] (58)

[Youheng: The proof is standard textbook so I omitted it here.] Using Hoeffding’s inequality, we get
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Lemma 5. With probability at least 1− δ, for ∀f ∈ F ,

|Eϕ(f, π)− EdD [Eϕ(f, π)]| ≤

√
R2

max

2n(1− γ)2
· log 2|F|

δ
(59)

And we have the standard Bellman completeness assumption
Assumption 9. (Bellman Completeness) ∀f ∈ F , T πf ∈ F .

Consequently, we have

|EdD [Eϕ(Q̂π
ϕ, π)]| ≤

√
2R2

max

n(1− γ)2
· log 2|F|

δ
(60)

Theorem 4. Under Assumption 9,

|JQ̂π
ϕ
(πϕ)− J(πϕ)| ≤

√
Cπ(ϕ)

1− γ
·
(

2R2
max

n(1− γ)2
· log 2|F|

δ

) 1
4

(61)

[Youheng: The proof is standard textbook so I omitted it here. Note that there times an extra factor 2.
This may not be the best rate, but I’ll leave it here for simplicity.]

[Youheng: Potentially, the analysis can be extended to other algorithms such as double-robust or
MIS, and the analysis will also be quite standard, so I’ll keep it this way.]

4.3 Gap Between True Algorithm and Virtual Algorithm

Noticed that we previously assumed the Lipchitz continuity of value function, whose equivalence to
the Lipchitz continuity of Q-function at action a can be easily proven. We now assume the function
class F we use to approximate Q-function is also Lipchitz with regard to belief state.
Assumption 10. (Lipchitz of Function Class) ∃LQ, ∀f ∈ F , ∀a ∈ A, |f(b1, a) − f(b2, a)| ≤
LQ∥b1 − b2∥1.

With the assumption on the function class, we can therefore control the differences between Eϕ(f, π)
and E(f, π) for the very same fixed f ∈ F , which is stated in the lemma. [Youheng: Before that,
there’s some problem with common abstraction literature that I’d like to point out. There’s a little
difference in setting between my Theorem 1 and standard abstraction. I’ll draw a graph to indicate
the subtle relation and difference.]
Lemma 6.

|E(f, π)− Eϕ(f, π)| ≤
4Rmax

1− γ
·
(
(1 + γ)LQ +

Rmax

1− γ

)
ε (62)

Proof.

|E(f, π)− Eϕ(f, π)|
= |ED[(f(b, a)− (r + γf(b′A, π)))(f(b, a)− (r + γf(b′B , π)))]−

ED[(f(ϕ(b), a)− (rϕ + γf(ϕ(b′A), πϕ)))(f(ϕ(b), a)− (rϕ + γf(ϕ(b′B), πϕ)))]|
≤ |ED[{(f(b, a)− f(ϕ(b), a))− (r(b, a)− rϕ(ϕ(b), a))− γ(f(b′A, π)− f(ϕ(b′A), πϕ)}

· (f(b, a)− (r + γf(b′B , π)))]|+
|ED[{(f(b, a)− f(ϕ(b), a))− (r(b, a)− rϕ(ϕ(b), a))− γ(f(b′B , π)− f(ϕ(b′B), πϕ)}

· (f(b, a)− (r + γf(b′A, π)))]|. (63)
Using the fact that

|f(b, π)− f(ϕ(b), πϕ)|
= |Eπ(a|b)[f(b, a)]− Eπ(a|ϕ(b))[f(ϕ(b), a)]|
≤ |Eπ(a|b)[f(b, a)]− Eπ(a|ϕ(b))[f(b, a)]|+ |Eπ(a|ϕ(b))[f(b, a)]− Eπ(a|ϕ(b))[f(ϕ(b), a)]|

≤ Rmax

1− γ
ε+ LQε (64)
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we have

|E(f, π)− Eϕ(f, π)|

≤ 2 · 2Rmax

1− γ
·
(
(1 + γ)LQ +

Rmax

1− γ

)
ε (65)

Then, we look at how Q̂π and Q̂π
ϕ differs on the very same empirical bellman error Eϕ(·, π).

Theorem 5.

|Eϕ(Q̂π, π)− Eϕ(Q̂π
ϕ, π)| ≤

8Rmax

1− γ
·
(
(1 + γ)LQ +

Rmax

1− γ

)
ε (66)

Proof.

Eϕ(Q̂π, π)− Eϕ(Q̂π
ϕ, π) + E(Q̂π

ϕ, π)− E(Q̂π, π)

= Eϕ(Q̂π, π)− E(Q̂π, π) + E(Q̂π
ϕ, π)− Eϕ(Q̂π

ϕ, π)

≤ |Eϕ(Q̂π, π)− E(Q̂π, π)|+ |E(Q̂π
ϕ, π)− Eϕ(Q̂π

ϕ, π)|

≤ 8Rmax

1− γ
·
(
(1 + γ)LQ +

Rmax

1− γ

)
ε (67)

where we employ Lemma 6 for the last inequality.

Using the fact that

Eϕ(Q̂π, π)− Eϕ(Q̂π
ϕ, π) ≥ 0 (68)

E(Q̂π
ϕ, π)− E(Q̂π, π) ≥ 0, (69)

we have

|Eϕ(Q̂π, π)− Eϕ(Q̂π
ϕ, π)| ≤

8Rmax

1− γ
·
(
(1 + γ)LQ +

Rmax

1− γ

)
ε (70)

To put things together, we have

Theorem 6.

|EdD [Eϕ(Q̂π, π)]| ≤

√
2R2

max

n(1− γ)2
· log 2|F|

δ
+

8Rmax

1− γ
·
(
(1 + γ)LQ +

Rmax

1− γ

)
ε (71)

And consequently,

Theorem 7.

|JQ̂π (πϕ)− J(πϕ)| ≤
√
Cπ(ϕ)

1− γ
·

√√√√√
2R2

max

n(1− γ)2
· log 2|F|

δ
+

8Rmax

1− γ
·
(
(1 + γ)LQ +

Rmax

1− γ

)
ε

(72)

Theorem 8.

|J(πϕ)− J(π)| ≤ (LH + Lπ + 1)Rmaxε

1− γ
+

Rmaxε

1− γη
+

RmaxLV ε

(1− γ)2
+ 2|O||A| γRmax

(1− γ)2
(1 + Lπ)ε

(73)
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Proof.
|J(πϕ)− J(π)| (74)

= Eb∼d0
[V

πϕ

bin(ϕ(b))− V π
true(b)]

≤ ∥[V πϕ

bin ]true − V π
true∥∞

≤ ∥[V πϕ

bin ]true − [Ṽ
πϕ

bin ]true∥∞ + ∥[Ṽ πϕ

bin ]true − V
[πϕ]true
true ∥∞ + ∥V [πϕ]true

true − V π
true∥∞

≤ (LH + Lπ + 1)Rmaxε

1− γ
+

Rmaxε

1− γη
+

RmaxLV ε

(1− γ)2
+ 2|O||A| γRmax

(1− γ)2
(1 + Lπ)ε (75)

Theorem 9.

|JQ̂π (π)− JQ̂π (πϕ)| ≤
Rmax

1− γ
ε+ LQε (76)

Proof.
|JQ̂π (π)− JQ̂π (πϕ)|

= |Eb∼d0 [Q̂
π(b, π)]− Eb∼d0 [Q̂

π(ϕ(b), πϕ)]|
= |Eb∼d0

[Q̂π(b, π)− Q̂π(ϕ(b), πϕ)]|

≤ Rmax

1− γ
ε+ LQε (77)

Eventually
Theorem 10.

|JQ̂π (π)− J(π)| ≤
√

Cπ(ε)

1− γ
·

√√√√√
2R2

max

n(1− γ)2
· log 2|F|

δ
+

8Rmax

1− γ
·
(
(1 + γ)LQ +

Rmax

1− γ

)
ε

+
(LH + Lπ + 2)Rmaxε

1− γ
+

Rmaxε

1− γη
+

RmaxLV ε

(1− γ)2

+ 2|O||A| γRmax

(1− γ)2
(1 + Lπ)ε+ LQε (78)

And we finish the total analysis. Notice that we will need to assume
√
Cπ(ε) · ε would tend to zero

when ε → 0. In finite horizon setting (Section 7), this is automatically satisfied, but in infinite setting,
we will need to assume that covering number has a increasing rate slower than 1/ε when ε ≪ 1.
Generally, covering number of belief space characterizes the hardness of OPE, and in infinite horizon
cases, the analysis would depend on the rate of the covering number and even may not be able to
control. But of course, this is assuming the most exploring data sampling distribution , and could
be different when the exploring policy is good enough (i.e. can fit the target occupancy better.)
[Youheng: Can change Lipchitz assumption of policy and value function...but the affect would be
limited.]

For a sample complexity guarantee, one can first decide with probability 1− δ, the entire error should
be below ϵ, then one can set an appropriate ε so that the error ϵ can be balanced onto the terms with ε,
and the terms with 1/n. Take a simple example, suppose√

2R2
max

n(1− γ)2
· log 2|F|

δ
= 3 · 8Rmax

1− γ
·
(
(1 + γ)LQ +

Rmax

1− γ

)
ε. (79)

Then one may solve the equation

ϵ =
2
√
Cπ(ε)

1− γ
·

√
8Rmax

1− γ
·
(
(1 + γ)LQ +

Rmax

1− γ

)
ε+

(LH + Lπ + 2)Rmaxε

1− γ

+
Rmaxε

1− γη
+

RmaxLV ε

(1− γ)2
+ 2|O||A| γRmax

(1− γ)2
(1 + Lπ)ε+ LQε (80)
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for the optimal ε(ϵ). After that, putting ε(ϵ) into (79) and one can solve the sample complexity n.

4.4 On the Rate of Covering Number

Consider the true belief state only spreading on a low dimensional manifold, we assume the covering
number of the belief state space scales as

Cε = C · 1

aε
1
r + εd

. (81)

Then the best exploring policy has a worst case scaling as

Cπ(ε) = C · 1

aε
1
r + εd

. (82)

Then according to (80), we get [Youheng: to be continue...]

5 Quick-Forgetting Function Class

In this section, consider a modified version of Assumption 4, which indicate that there exists an η′,
such that

η′∥b1 − b2∥1 ≤ ∥bo,a1 − bo,a2 ∥1 ≤ η∥b1 − b2∥1

A possible example of a possible Lipchitz function class is the Quick-Forgetting function class F [m]
q ,

so that for ∀f ∈ F [m]
q ,

f : H → [0,
Rmax

1− γ
] (83)

f : τh 7→ V (τh−m:h) (84)

and

∀τ [1]h , τ
[2]
h , |f(τ [1]h )− f(τ

[2]
h )| ≤ LF · ηhe s.t. τ

[1]
h−m:h = τ

[2]
h−m:h (85)

for some ηe ≤ η′.

In the sense that two distinct belief states will be close to each other after the same amount of history
τh−m:m length m, by a factor of ηm, it is natural that the corresponding value function will be close
enough under our assumption. Thus, by mapping two histories with the same m-step tail to the same
value will be a good approximation.

With that said, we would also like to check out the Lipchitz guarantee that F [m]
q provides. We first

have the following lemma, which indicates the smoothness of F [m]
q on the true belief states.

Lemma 7. ∀f ∈ F [m]
q , we have

∥f∥lip = max
h1,h2∈H
h1 ̸=h2

|f(h1)− f(h2)|
∥b(h1)− b(h2)∥1

≤ Fm < ∞ (86)

for some uniform Fm.

Proof. [Youheng: Omitted here.]

We also have the following extension lemma
Lemma 8. Let T ⊂ X be two metric spaces with 2 ≤ |T | = k ≤ ∞. Let Y be a Banach space,
f : T → Y be a function. Then there exists a function g : X → Y such that g|T = f and

∥g∥lip ≤ K · (log k) · ∥f∥lip (87)

where K is an absolute constant.

According the the lemmas above, if f(τh) = fb→R(b(π)), fb→R can be extended to the entire R|S|

while being Fm ·K ·m · log(|O||A|)-Lipchitz.
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6 Future Dependent Value Function and Belief Space POMDP

[Youheng: There’s something wrong here, the behaviour policy in the belief space is not memoryless.
And we don’t need Belief space POMDP actually, directly changing sh to ϕ(b(τh)) will be fine, that
way we won’t need memoryless condition.]

7 Finite-Horizon Guarantees

7.1 Lipchitz Function Class Guarantee

For the finite horizon POMDP, any value function class is guaranteed to be Lipchitz under Assumption
1 with regard to some worst Lipchitz value.

This is because

∥f∥lip = max
h1,h2∈H
h1 ̸=h2

|f(h1)− f(h2)|
∥b(h1)− b(h2)∥1

(88)

is a finite number given that B is a finite state. Then one can follow similar steps from Section 5 and
use Lemma 8 to get an upper bound for the Lipchitz parameter.

7.2 Covering Number Guarantees

For finite B, the covering number is upper bounded by |B|. However this could be exponential.

8 Belief Space Binning for FDVF

[Youheng: to be continue...]

References
[1] Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based

reinforcement learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 264–273. PMLR, 10–15 Jul 2018.

[2] Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous
markov decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011.

[3] Omer Gottesman, Kavosh Asadi, Cameron S. Allen, Samuel Lobel, George Konidaris, and
Michael Littman. Coarse-grained smoothness for reinforcement learning in metric spaces. In
Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors, Proceedings of The 26th
International Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings of
Machine Learning Research, pages 1390–1410. PMLR, 25–27 Apr 2023.

[4] Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, and Tuo Zhao. Deep reinforcement learning
with robust and smooth policy, 2020.

[5] Zongzhang Zhang, Michael Littman, and Xiaoping Chen. Covering number as a complexity
measure for pomdp planning and learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 26, pages 1853–1859, 2012.

14


	Introduction
	Preliminaries
	Infinite-horizon Discounted POMDP
	Belief State Space and Smoothness Condition
	Off-line Data

	Overall Analysis In a Nutshell
	Off-Policy Evaluation under Smooth Conditions
	Abstraction under Covering
	Algorithm on Belief Space MDP
	Gap Between True Algorithm and Virtual Algorithm
	On the Rate of Covering Number

	Quick-Forgetting Function Class
	Future Dependent Value Function and Belief Space POMDP
	Finite-Horizon Guarantees
	Lipchitz Function Class Guarantee
	Covering Number Guarantees

	Belief Space Binning for FDVF

